Friday, March 8, 2013

Integrated Nanoreactor Systems: Triggering the Release and Mixing of Compounds Inside Single Vesicles


Pierre-Yves Bolinger, Dimitrios Stamou, and Horst Vogel*
LCPPM, Swiss Federal Institute of Technology Lausanne, CH-1015 Lausanne, Switzerland


Introduction: Lipid vesicles constitute nanocontainer systems ideally suited for the isolation, preservation, transport, and localization of few1 or single2 molecules. Their ultrasmall dimensions (minimal diameters of 20 nm) allow unparalleled reduction of confined volumes to the zeptoliter range (1 zL ) 10-21 L). The availability of lipids
with variations in the hydrocarbon chains and the polar headgroups permits in addition the optimal design of a container that is tight and inert to the reactants and products of many biochemical processes like protein expression,3 enzymatic reactions,4 or mRNA transcription5 to mention a few. The potential of these systems for miniaturization and bionanotechnology was nevertheless realized only after single vesicles were extracted from the ensemble and addressed as individuals, either by means of micromanipulation6 or by directed assembly on patterned surfaces.1,7 Here we present a method that allows the on-demand release and mixing of soluble compounds stored in the interior of individual vesicular nanoreactors.

No comments:

Post a Comment